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1. Introduction
During the last few years there has been a tremendous increase in the
development and application of finite element technology for the solution of
fluid flow problems, particularly on adaptively defined unstructured meshes.
Some of the current finite element codes can handle large-scale three-
dimensional simulations of compressible or incompressible flows with very
complicated geometry, general boundary conditions, and hundred of thousands
to millions of degrees of freedom[1,2].

A successful general analysis code that attempts to handle realistic problems
must be equipped with four main properties: modelling flexibility, numerical
stability, accuracy and efficiency. Flexibility in modelling general geometries,
material properties, boundary conditions etc. is an important capability which
requires special non-trivial treatment, especially in three dimensions. Stability
and accuracy are essential ingredients in establishing the reliability of the
numerical results. High computing speed is a critical necessity for practical
reasons of obtaining results within acceptable times. Various tools have been
devised in recent years in the context of finite element analysis to address each of
these issues. The scheme described in this paper incorporates a number of tools
which cover all four aspects, and thus leads to a powerful solution technique. 
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Traditionally compressible and incompressible viscous flow problems are
handled by two separate codes, since these two types of problems typically
involve different concerns and numerical difficulties. However, recently Hauke
and Hughes[3] showed how the compressible and incompressible cases can be
combined, by approaching the incompressible limit while using either primitive
(pressure-velocity-temperature) variables or entropy variables (but not
conservation variables). In this work, we have adopted this approach and have
developed a finite element scheme capable of solving both the compressible and
incompressible Navier-Stokes equations. While a direct approach to
incompressible problems may be more efficient in some cases[1], the combined
compressible-incompressible approach provides a unified and convenient
analysis framework, and is especially attractive when buoyancy is introduced
into the incompressible Navier-Stokes equations via the Boussinesq
approximation. 

In the present paper, we propose a new finite element framework for the
large-scale analysis of compressible and incompressible viscous flows. The
scheme is based on a combined compressible-incompressible Galerkin least-
squares (GLS) space-time variational formulation. Unstructured three-
dimensional spatial meshes of tetrahedral elements are employed, with linear
spatial interpolation in all the variables. This setup enables straightforward
generalization to higher-order elements. Piecewise-constant interpolation is
used in time, with local time-stepping for steady flows. The scheme incor-
porates automatic adaptive mesh refinement, with a choice of various error
indicators. It is implemented on a distributed-memory MIMD parallel computer,
and includes an automatic load-balancing procedure to distribute the load
uniformly among the processors. The non-symmetric system of algebraic
equations is solved using preconditioned GMRES iterations.

This computational framework includes some of the features that have been
used in[2-4], as shown in Table I. It combines the capability to analyse viscous

Shakib Bottasso Hauke and
Feature et al.[4] et al.[2] Hughes[3] Present

Space-time GLS X X X X
Viscous flows X X X
Navier-Stokes equations +
Boussinesq approximation X
Compressible-incompressible X X
Three dimensions X X
Unstructured meshes X X
Parallel implementation X X
Adaptivity X X
Boundary-layer error indicator X

Table I.
Comparison of 

computational features
used in three previous

works and in the present
work
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flows[4] using a combined compressible-incompressible formulation[3], with
parallel adaptive capabilities in three dimensions using unstructured
meshes[2]. In addition, the scheme is capable of solving the Navier-Stokes
equations with the Boussinesq approximation. This allows for the analysis of
buoyancy-driven flows associated with divergence-free velocity fields, which
are typical, for example, in certain crystal growth applications. Also, a
“boundary layer error indicator” is incorporated in the adaptive procedure,
which is based on the local gradient of the velocity magnitude.

We apply the new scheme to two model viscous flow problems. The first
problem concerns the Mach 3 flow of air over a flat plate, and is intended to test
the performance of the scheme in analysing compressible supersonic flows. The
results are compared to those presented in[4], which are obtained using a serial
code with a uniform structured two-dimensional mesh.

The second problem is that of a divergence-free buoyancy-driven flow in a
cavity. This is a model for the steady melt flow in a liquid encapsulated
Czochralski (LEC) crystal growth process[5,6]. There have been many attempts
to model Czochralski (CZ) and LEC processes with various levels of complexity.
See, e.g. the local (single-phase) analyses in[7-11] and the global (multi-phase)
analyses in[12-15], which use various finite volume and finite element schemes,
as well as the recent review[16], and references therein. Most of the computa-
tional works on CZ and LEC assume axi-symmetric solutions, but some works
are based on three-dimensional analyses[8,9-11].

Most of the finite element analyses performed in crystal growth simulations
are based on a standard Galerkin weighted residual formulation. For example,
the scheme in[12-14] uses continuous biquadratic interpolation for velocities
and temperature, and discontinuous bilinear interpolation for pressure. This
combination is successful in that it satisfies the Babus̆ka-Brezzi stability condi-
tion[17], although it is not easily generalized to higher-order interpolation.
There has been an attempt to generalize this formulation to a Petrov-Galerkin
framework in[18]. Here we perform a local analysis of steady-state flow in
indium phosphide (InP) melt under LEC conditions, using a rather simple
model, to check the effectiveness of applying the new computational
framework, including the GLS formulation and the parallel adaptive
capabilities, to problems of this type. The governing equations are the Navier-
Stokes equations with the Boussinesq approximation. 

In the next section, we describe the flow problems under consideration. In
section 3 we discuss the finite element formulation, and in section 4 we describe
the computational methodology and its various ingredients in some detail. In
section 5, we present some numerical results; first for the Mach 3 flow of air over
a flat plate, and then for buoyancy-driven flows in InP melt. We close the paper
with some remarks.

2. Statement of the problem
The compressible Navier-Stokes equations can be written in the general
conservation form (see, e.g.[19]),
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(1)

Here, U is the vector of conservation variables, Fi
adv and Fi

diff are the advective
and diffusive flux vectors in the ith direction, and S is the source vector. A
superimposed dot indicates total differentiation with respect to time, a comma
denotes partial differentiation, and the summation convention with respect to
repeated indices is enforced. In the three-dimensional case (1), is a set of five
equations for mass, momentum (three scalar equations), and energy
conservation.

Consider a transformation Y = Y(U), and convert (1) to the quasi-linear form

(2)

where A0, Ai and Kij, i, j = 1, 2, 3, are Y-dependent matrices. Assume that the
source term S can be written in the form,

(3)

where S0 is a constant vector, and C is a Y-dependent matrix. For future
reference, write (2) and (3) in the form

(4)

(5)

Three possible choices for Y are: entropy variables[19], for which the system (2)
becomes symmetric; pressure-primitive variables; and density-primitive
variables[3, 20]. Hauke and Hughes[3,20] recently showed that the incompressible
limit of (2) is well defined, and a well-behaved variational formulation of the
problem can be derived when Y is chosen as either the entropy variables or the
pressure-primitive variables. Thus, with either of these two variable sets, the
compressible and incompressible cases may be combined into a unified
framework.

For fully incompressible flows, this approach seems to be less efficient than
the direct one, because there is complete decoupling of the energy equation from
the momentum and continuity equations. Moreover, in many cases only the
velocity and pressure fields are of interest and not the temperatures. Under such
circumstances, the full solution of (2) for incompressible flows entails super-
fluous computational effort. Indeed, traditionally compressible and incom-
pressible viscous flow problems are handled by two separate codes[1]. However,
the combined compressible-incompressible approach becomes attractive when
buoyancy is considered, and introduced into the incompressible Navier-Stokes
equations via the Boussinesq approximation[21]. In this case, S in (2) is
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temperature-dependent, and all the equations are coupled, as with compressible
flows. We adopt the combined compressible-incompressible approach here,
using entropy variables for Y.

The time-dependent Navier-Stokes equations with the Boussinesq approxi-
mation can be written in the explicit form

(6)

(7)

(8)

Here, v is the velocity vector, T is the temperature, σ is the stress tensor, ρ0 is a con-
stant reference density of the fluid, T0 is a reference temperature (corresponding to
the density ρ0), β is the thermal expansivity of the fluid, g is the gravitational
acceleration, ez is a unit vector in the z direction, cp is the heat capacity, and κ is the
heat conductivity of the fluid. Equations (6), (7) and (8) are, respectively, the
momentum, continuity and energy equations. The last term on the right hand side
of (6) is the buoyancy term, which is responsible for the coupling between the
temperature and velocity fields. Gravity is assumed to act in the –z direction. The
stress-pressure-velocity relations are given, for a Newtonian fluid, by

(9)

where I is the identity tensor, and µ is the fluid viscosity.
Equations (6)-(9) are recast in the vector form (2) or (4), to fit the combined

compressible-incompressible formulation. These equations are accompanied by
appropriate boundary and initial conditions, to complete the statement of the
problem. In the steady-state case, the time-derivative terms in (6), (8), (2) and (ref
L) are dropped.

3. Variational formulation
Our starting point is the transformed time-dependent Navier-Stokes equations
(2). These equations will be considered even when steady solutions are sought; in
this case we shall employ the commonly-used relaxation procedure, in which we
discretize the time-dependent problem (2) in space and time, and march rapidly
in time to reach a steady state (see section 4 – “Interpolation in time and space”).

We define a weak form of (2) based on the time-discontinuous Galerkin least
squares (GLS) method. This formulation was originally developed for two-
dimensional compressible flows[4], and was also used in other configurations
by [2] and [3] ; see Table I. The time-discontinuous GLS method is well suited for
incorporation in an automated parallel adaptive environment. The method has
a firm mathematical foundation, and its stability and accuracy properties have
been rigorously established (see[4] and references therein). Moreover, it has the
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ability to handle moving boundary problems naturally by means of space-time
deforming meshes[22]. First we introduce some notation.

Given a spatial domain Ω with boundary Γ, consider a space-time domain
Ω × I, where the time interval I is divided into intervals (time steps), In =
(tn, tn + 1). Let Qn = Ω × In (a “space-time slab”), let Pn = Γ × In, and let ν be the
unit outward normal on Pn. Also, let W –

n and W+
n denote the values of the time-

discontinuous quantity W as t → tn from below and above respectively. The
slab Qn is decomposed into (Nel)n space-time elements, denoted Qe

n. Finally, let
§(Qn) and S0(Qn) denote the appropriate trial and test spaces respectively,
defined on the slab Qn.

With this notation, the variational formulation of (2) is stated as follows:
within each slab Qn, find Y ∈ §(Qn) such that for all W ∈ §0(Qn),

(10)

The first and last integrals in (10) are the standard Galerkin terms. The second
integral weakly enforces continuity of the solution in time from one slab to the
next. Thus, the first, second and last integrals together constitute the discontin-
uous-Galerkin method[23]. The use of finite element shape functions which are
temporally discontinuous enables simple stepping in time, similar to the time
marching procedure performed in finite difference schemes. The third and
fourth integrals are stabilizing terms; the third is a least squares term, and the
fourth is a discontinuity-capturing term. The variational form (10) constitutes
the time-discontinuous GLS method (with discontinuity capturing).

The least squares (LS) term is the main stabilization mechanism. Numerical
stability is always an issue in finite element formulations of the Navier-Stokes
equations. A necessary condition for stability is the Babus̆ka-Brezzi condition,
and it is well known that it is not easily satisfied with standard Galerkin
methods[24]. For example, equal-order interpolation in space for all the
variables leads to a highly unstable numerical scheme, which typically yields
non-convergent solutions even for relatively simple problems. The LS term
enhances the stability of the method, and allows the use of equal-order
interpolation in space, while maintaining the optimal order of accuracy.
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Equal-order interpolation has the advantage that it easily accommodates high-
order elements and p-adaptivity. Stabilization is also needed to eliminate global
pollution (spurious oscillations) owing to unresolved boundary layers, large
gradients, discontinuities, and advection dominance[25].

The matrix τ appearing in the LS term in (10) is designed to balance stability
and accuracy in both the diffusive and advective limits. Definitions of τ for the
compressible and incompressible Navier-Stokes equations can be found in[4]
and[26] respectively. A way to combine both τ ’s is proposed in[20].

The LS term largely eliminates global pollution effects; however, Gibbs’
phenomena may still exist in the immediate vicinity of strong discontinuities
such as shock waves. The fourth integral in (10) is a non-linear discontinuity
capturing (DC) operator, which controls these local oscillations. For more
details, as well as the definitions of δ and gij, see[4, 20]. 

As can be seen from (10), the LS and DC operators are applied at the element
level. The method is consistent in the sense that (10) is satisfied by the exact
solution of the problem. This is ensured since both stabilization terms depend
on the residual LY – S0 (see (4)) in the element, and vanish with this residual.
Note also that the weighting LW in the LS term includes the Y-dependent part
of the source S, but does not include its constant part S0 (see (3)).

Essential and natural boundary conditions can be applied in conjunction with
(10). Essential boundary conditions are imposed directly, after expressing them in
terms of the Y variables. Natural boundary conditions are imposed by substitu-
ting the prescribed value for the corresponding flux in the (last) boundary
integral of (10). If no boundary conditions are imposed on some part of the
boundary, homogeneous natural boundary conditions result using the current
values of Y.

4. Computational scheme
Figure 1 summarizes the overall computational scheme. First, an initial mesh is
generated. Then, the domain is decomposed into partition domains, so as to
balance the initial load among the parallel processors. The ensuing main
analysis loop includes five phases: 

(1) the “form phase”, in which the element matrices and vectors and the
global equations are formed;

(2) the “solve phase”, where the global algebraic equations are solved;
(3) the error estimation phase, where some specified measure of the local

error (the error indicator) is calculated for all the elements;
(4) the mesh adaptation phase, in which the mesh is locally refined and/or

coarsened based on the error indicator values; and
(5) the load balancing phase, where elements are migrated between

processors in order to redistribute the load in a uniform manner among
the processors. 

The procedures used for the mesh generation, mesh adaptation, domain
partitioning, load balancing and element array formation are all linked to the
parallel mesh database and attribute manager, which store, handle and supply
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information on mesh entities and physical data. Now we shall describe in some
detail the various ingredients of this computational scheme.

Initial mesh generation and the attribute manager
Spatial meshes are generated via the finite octree technique[27], which
constructs general unstructured meshes of tetrahedral elements. The first step
in meshing a model region is to develop an octree; this is a multi-level tree
whose basic unit on each level is a mesh cell divisible to eight subcells (octants)
on a lower level. This octree is constructed so that it reflects the mesh
information and is consistent with the triangulation on the boundary of the

Figure 1.
Flowchart of the overall

solution procedure
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model region. A one-level difference of octants sharing one or more edges is
enforced during this process to control smoothness of the mesh gradations.
Once the octree is generated, the octants are classified as interior or boundary
octants. Some interior octants are reclassified as boundary octants if they are
sufficiently close to mesh entities on the boundary. The next step consists of
meshing the interior octants. The last step in the mesh generation is to connect
the boundary triangulation to the interior octants, using an operation called
“face removal”. The finite octree mesh generation procedure has been proved to
be an extremely strong tool for general three-dimensional geometries.

The attribute manager stores and handles the physical attribute information
required to support the analysis, e.g. boundary conditions, initial conditions and
material properties. This information is tied to the geometric model definition,
rather than to the discrete model, and is defined in a general hierarchical
form[28]. This is in contrast with the common procedure of defining the
physical attribute information directly in terms of the discrete model. The
attribute manager is especially effective in an adaptive environment.

Interpolation in time and space
The choice of finite element shape functions in space and time, in conjunction
with the GLS time-space variational formulation described in section 3,
determines the definition of the element arrays, and thus completes the
information needed for the “form phase”. 

In the present scheme, piecewise-constant interpolation is used in time. This
choice is permitted in the time-discontinuous GLS method, and is very
convenient and efficient for steady-state analysis. It is used for transient
analysis. A single Newton iteration is performed at each time step.

In transient analysis, a time-step size is specified which may vary in time,
but is uniform in space. In steady-state analysis, the time-step need not be
uniform throughout the mesh, but is determined locally, e.g. to achieve a
specified element Courant number to reach steady state rapidly. The Courant
number measures the estimated number of elements over which the informa-
tion propagates in a single time step. Using this procedure, the flow information
propagates at a nearly uniform rate (a fixed number of elements per time step)
throughout the spatial domain.

In space, continuous piecewise-linear spatial interpolation is used in all the
variables. This convenient choice, which is never possible in standard mixed
Galerkin formulations, is made possible by the LS stabilization. In addition to
programming convenience, a major advantage of an equal-order interpolation is
that it is amenable to easy generalization to higher-order elements. As a
consequence, the present scheme can be extended, in a straightforward manner,
to general hp-adaptive strategies. 

Parallel procedures
The finite element scheme used here is designed to work in an automatic parallel
adaptive environment. One important aspect of parallelization is the partitioning
of data among the processors, given the irregular communication patterns that
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characterize unstructured meshes. Domain decomposition is used for partition-
ing the computational domain into subdomains, each being assigned to a
processing node. The domains exchange data with each other through their
boundaries. 

The partitioning of the initial mesh is done using a tree-based moment-of-
inertia recursive bisection (RB) algorithm. It is performed by loading the mesh
onto one processor and recursively bisecting it in a direction normal to the
region’s principal axis of inertia. Successive halves are sent to other processors
to be further split in parallel. The initial mesh can also be loaded onto multiple
processors in any order and partitioned with a parallel bisection procedure[29].

The message passing interface (MPI) is used to implement all parts of the
software. Parallel implementation of the form phase is straightforward, with no
communication among the processors. The solve phase is based on the use of
the preconditioned GMRES algorithm (see section 4 – “Equation solving,  for
the details”).

The parallel mesh database (see Figure 1) stores, handles and supplies
information on mesh entities. It has three main roles: to provide a common
interface and a single library for all the mesh related application, namely mesh
generation, mesh refinement/coarsening and finite element analysis; to provide
information on adjacency relations among shared mesh entities on different
processors; to support a mesh migration algorithm which facilitates arbitrary
mobility of mesh entities on processors. The mesh database defines the mesh in
terms of the topological entities of the mesh (vertices, edges, faces and regions)
with pointers between them.

The data structures used in the scheme provide fast query of domain
boundary information. Such information includes adjacencies for entities
located on more than one partition, the number and list of adjacent processors
given an entity type adjacency, and so on. In addition to these queries, fast up-
date procedures are used for the refinement/coarsening and element migration/
load balancing components of the solver. The fast query and update are achieved
via a topological-entity hierarchy data structure, which provides a two-way link
between the mesh entities of consecutive order, i.e. regions↔ faces,
faces↔edges and edges↔vertices. Using this hierarchy, any entity relationship
can be derived by local traversals[30]. The entities on domain boundaries are
augmented with links, which indicate the processor holding the entity and point
to the location of the corresponding entity on the neighbouring processor.

Scalable parallel procedures are used to migrate elements between proces-
sors for the purpose of redistributing the mesh in order to achieve load
balance[31, 32]. The migration routines are implemented in three stages: the
element mesh and its attribute data is packed into messages and sent; packed
elements are received and unpacked; and the inter-processor links are updated.
Procedures allow each processor to send and receive multiple migrations of
elements. An element-based iterative dynamic load balancing scheme is used to
determine those elements to be migrated from heavily loaded to less loaded
processors. The hierarchic load request is represented by a tree, on which a scan
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operation is performed. The complexity of this scan is O(log T), where T is the
number of nodes in the tree balance[31].

These parallel procedures result in a scalable scheme (see section 4 –
“Overall performance”) that runs on a distributed-memory MIMD parallel
computer. The simulations described in section 5 are performed on 36- and 512-
processor IBM SP-2 computers at Rensselaer Polytechnic Institute and Cornell
University respectively.

Error estimation
Local error control of non-linear hyperbolic and parabolic systems based on
rigorous mathematical foundations, i.e. on local a posteriori error estimates, is
very difficult in general (as opposed to the linear elliptic case, for example).
Traditionally, error indicators are used in place of error estimators when the
former are not available. Although error indicators do not necessarily measure
the true discretization error, they do indicate, if chosen carefully, local regions of
the computational domain associated with high errors, and thus can be very
useful in an adaptive environment. 

Two types of error indicators are currently implemented in the scheme
described here; both can be applied to one or more of the physical variables
(typically density, pressure or temperature). The first error indicator is the
magnitude of the gradient of the variable chosen. This indicator is not based on
solid mathematical ground, but it is useful in practice when relatively small
local regions of large gradients of the solution are present. Error indicators
based on the magnitude of density or pressure gradients are usually effective in
tracking shocks in compressible supersonic flows. A nodal error indicator
which is appropriate when thin boundary layers are present is

(11)

where AI(·) is the average value of a discontinuous quantity at node I. This error
indicator measures the local change in the magnitude of the nodal velocity. The
magnitude of the velocity v is assumed to vary linearly on each element. In the
simulations of section 5 – “LEC melt flows”, we use a combination of the
“boundary layer error indicator” (11) and one which measures temperature
gradient. 

The second error indicator which is implemented in the scheme is related to
the magnitude of the second derivatives of the variable chosen[33]. This
indicator is appropriate for linear elements, since it attempts to measure the
error by estimating the leading (quadratic) term truncated. It has the form

(12)

where h is the mesh size parameter, φ is the solution variable being monitored,
HI(φ) is a measure of the nodal magnitude of the second derivatives of φ, MI(·) is
the weighted average of a quantity over all the nodes which surround node I, ε
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is a tuning parameter, and AI(·) is defined as before. The second derivative
measure HI is computed using a variational recovery technique[33].

For each edge, the value of the error indicator is computed by averaging the
associated two nodal values of the indicator. These edge values are then used to
control mesh adaptation. Maximum and minimum thresholds, M and m, are
supplied for the error indicators, so that the edge is refined if the error
associated with at least one of the selected physical variables is higher than M,
and is collapsed if the error is smaller than m for all selected variables. In some
cases, especially if sudden changes in the character of the solution are expected,
m is specified as zero, to turn off mesh coarsening. The threshold M is chosen
so that only about 5-15 per cent of the elements in the mesh are refined, to
prevent an excessive computational effort in the subsequent analysis cycle.
Parallel implementation of the error indicator calculation is straightforward.

The adaptive process starts from an initial mesh (see Figure 1), which is
generated using the finite octree technique. This mesh should be fine enough to
capture the main features of the solution, but ideally not much finer than this.
Starting from an initial mesh which is too crude is potentially dangerous,
because it may lead to situations where a certain feature of the exact solution
(e.g. a weak shock or local oscillations), which occurs at a scale much smaller
than that of the initial mesh size parameter, may remain undetected by the error
estimation phase.

In transient analysis, an adaptive step, which includes error estimation and
mesh adaptation, is invoked every specified number of time steps. In a steady-
state analysis, the procedure adopted in the present work is as follows: first, an
initial mesh is generated. Then, local time-stepping is performed with this mesh
for a sufficient number of time steps, until the residual norm is reduced below a
certain specified level, indicating that a steady state is reached. Then, one step
of mesh adaptation is performed, using one of the error indicators mentioned
above. After this step, another cycle of local time stepping is performed, until
steady state is again reached. This procedure is repeated for a desired number
of cycles. A typical behaviour of the residual norm is: possible initial
oscillations, then reducing monotonically until the first mesh adaptation, then
slightly increasing, and again reducing monotonically until the next adaptation
step, and so on. Cases where a more oscillatory behaviour is observed typically
indicate that a steady state was not reached successfully, possibly because one
does not exist or is unstable for the specified parameters.

Mesh adaptation
The mesh level adaptive scheme combines local refinement, coarsening and
triangulation optimization using local retriangulations. The refinement step
makes use of division patterns (templates). All possible patterns are considered
and implemented to allow for speed and avoid possible over-refinement. The
coarsening step is based on the edge collapsing technique. This procedure does
not require storage of any history information and therefore does not depend on
the refinement procedure. Triangulation optimization is necessary to prevent
mesh quality degradation. It is based on the iterative local retriangulation of
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well defined polyhedra, using the two dual techniques of edge removal and
multi-face removal[29]. 

Since refinement uses templates, its parallel implementation presents no
difficulties. First, mesh faces on the partition boundary are triangulated. Face
level interprocessor links are set up for the child faces of the mesh faces on the
partition boundary. Then, mesh regions are triangulated without communica-
tion involved. Any mesh edge carrying minimal inter-processor links transfers
link information to its two child edges. 

The efficient parallelization of local adaptive mesh refinement and coarsen-
ing is discussed in [29]. Efficient parallel retriangulation of polyhedra is
performed in three steps:

(1) retriangulate polyhedra which are fully interior to the partition;
(2) shift the partition boundary using the element migration techniques;
(3) retriangulate polyhedra that are now fully accessible owing to the shift.

Multiple processors can request the same off-processor region, and in such
cases the processor with the lowest identification number is the one which is
granted priority. This makes triangulation optimization an iterative process
and, naturally, shifting the partition boundary constantly in one direction
would quickly create a load imbalance. Therefore, a load balancing step (see
section 4 – “Parallel procedures”) is applied after each adaptive step. A way of
anticipating and avoiding these imbalances is described in[34].

Equation solving
The non-linear system of algebraic equations obtained from the finite element
discretization in space and time is linearized using Newton iterations. The
resulting non-symmetric linear system is solved iteratively using pre-
conditioned GMRES. Preconditioning is performed by means of a nodal block-
diagonal scaling transformation. Given the non-symmetric system

(13)

the GMRES algorithm[35] starts from an initial guess p0, and attempts to find
an approximate solution p0 + z to (13), where z is a vector in the Krylov space K
= (r0, Tr0, …, Tk–1r0) and r0 = F – T p0. The vector z is found by solving the
minimization problem

(14)

using the QR algorithm. An orthogonal basis for K is obtained by a Gram-Schmidt
procedure. This procedure involves matrix-vector multiplication and vector dot
products, which constitute the computationally-intensive part of the algorithm.

The matrix-vector multiplications are implemented in parallel and
necessitate the exchange of data through the interprocessor boundaries. In
order to overlap communication and computation for efficiency reasons, these
operations are realized following a four-step procedure on each processor: 
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(1) sending information on the inter-processor boundaries to each
neighbouring processor;

(2) performing computations involving only data associated with nodes that
lie within the internal volume of the partition;

(3) receiving information on the inter-processor boundaries from all the
neighbouring processors; and

(4) performing computations involving only data associated with nodes that
lie on the inter-processor boundaries. 

For the implementation of the vector dot product operations, nodes that lie on the
inter-processor boundaries are randomly split, so that two partitions that share
an internal boundary are assigned only a set of the nodes of that boundary. Then,
each processor performs the dot product involving nodes contained in its
internal volume and its subset of nodes on the partition boundaries. The sum of
all the processor results yields the global dot product. 

The minimization problem (14) is written in terms of an upper Hessenberg
matrix, whose dimension is the same as the dimension of the space K, and
whose entries are the results of the dot products performed during the
orthogonalization procedure. At the end of the Gram-Schmidt procedure, each
processor has complete knowledge of the upper Hessenberg matrix and is
therefore able to find a solution of (14) without inter-processor communication.
Similarly, once convergence is achieved in the GMRES solver, the Newton
update (i.e. addition of the incremental solution to the solution from the previous
Newton iteration) is performed by each processor independently with no
communication.

Overall performance
With the features described in the previous sections, the proposed scheme
contains the four desired properties mentioned in section 1: flexibility (mesh
and physical attribute handling), stability (LS and DC operators), accuracy
(adaptivity, ability to handle high-order elements), and speed (parallel
environment, local time-stepping).

The parallel adaptive procedure enables the solution of large problems, with
CPU times which are much smaller, for the same level of accuracy, than those
required in a serial code using a uniform mesh. A single steady-state simulation
of those reported in section 5 – “LEC melt flows”, with an initial mesh of about
140,000 elements, with two adaptive steps leading to a final mesh of about
400,000 elements, on 16 processors, took about 11 hours of computing,
including the initial mesh generation and partitioning (also see section 5 –
“Mach 3 flow over a plate”).

The parallel environment is associated with an additional memory require-
ment compared to a serial code, but it is usually marginal. This additional
storage is handled by the parallel mesh database, which defines the mesh in
terms of its topological entities with pointers between them. The mesh on each
processor is stored, and in addition, special treatment is given to those mesh
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entities which are on the boundary of the partition. For them, an entity
neighbour is identified by indicating the processor it is on and its local memory
pointer on that processor. There is also a need for a linked list of the entities on
the interprocessor boundaries to support the gather/scatter operations
performed by the GMRES solver. This comprises the added memory needed in
the parallel scheme, and it is typically small compared to the total memory
volume needed. The size of the added memory is proportional to the number of
mesh entities on the interprocessor boundaries.

The scheme has a high degree of scalability. This is demonstrated by Figure 2,
which shows the speed-up gained relative to a serial run as a function of the num-
ber of processors used.

These results correspond to one of the simulations reported in section 5 – “LEC
melt flows”. When the number of processors increases from one to two, a speed-
up of about two is obtained. When 16 processors are used, a speed-up of 14 is
obtained. Thus, the slope of the scalability curve is about 0.875 (vs. the ideal unit
slope). The 12 per cent reduction in the slope is owing to communication
overhead. Communication cost is mainly owing to the load balancing procedure,
which is dominated by interprocessor communications. However, this cost is
maintained at a reasonable level (as Figure 2 shows) owing to the special parallel
procedures mentioned in section 4 – “Parallel procedures”. The communication
cost is especially small for relatively large problems, where a large number of
finite elements is used per processor. 

5. Numerical examples and results
Mach 3 flow over a plate
To demonstrate the capability of the scheme to handle compressible viscous
flows, we consider steady flow of air over a flat plate, with inflow conditions

Figure 2.
Scalability of the
numerical scheme
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corresponding to M = 3 and Re = 1,000 (see[4, 20]). From the leading edge of the
plate, a thick boundary layer and a shock develop. The solution is two-
dimensional, but here it is obtained using the three-dimensional computational
domain –0.2 ≤ x ≤ 1.2, 0 ≤ y ≤ 0.8, 0 ≤ z ≤ 0.1, where the “thickness” 0.1 in the z
direction is arbitrary, and is chosen for numerical convenience. The boundary of
this domain is divided into seven faces, with the following boundary conditions:

x = –0.2 (inflow): ρ = 1, v1 = 1, v2 = v3 = 0, T = 2.769 · 10–4.
y = 0.8 (inflow): same as above.
y = 0, x ≤ 0 (plate surface): no-slip, T = 7.754 · 10–4.
y = 0, x < 0 (symm.): slip condition, zero normal heat flux.
z = 0 (symm.): same as above.
z = 0.1 (symm.): same as above.
x = 1.2 (outflow): no boundary conditions.

The gas is assumed to be ideal, with Sutherland’s viscosity law, µ = 0.0906T1.5/
(T+0.0001406), and Pr = 0.72. The initial mesh used is shown in Figure 3(a). It
consists of 6,486 tetrahedral elements and 1,770 nodal points (with 5 degrees of
freedom per node). The figure shows the trace of this mesh on the xy plane. Two
cycles of adaptive mesh refinements were applied (see section 4 – “Error
estimation”). The magnitude of the density gradient served as an error
indicator. The final mesh thus obtained is shown in Figure 3(b). Mesh
refinement at and near the boundary layer and the shock is clear.

Figures 4(a)-4(d) show the contours of the finite element solution for the
density, Mach number, temperature and pressure respectively. The results
agree well with those obtained in [4] and [20]. The latter results were obtained
using a serial, two-dimensional code, with a uniform structured mesh which is
as fine as the finest level in the mesh of Figure 3(b). Thus, we obtain a similar
solution to that of[4, 20] while achieving significant saving in the number of
degrees of freedom. It is apparent from Figures 3(b) and 4(a)-4(d) that the strong
features in the solution, namely the boundary layer and the shock, are captured
very effectively by the adaptive scheme. 

The final mesh is not uniform in the “thickness direction” z of the plate;
elements in the fine regions are small in all three dimensions, since the
tetrahedral elements generated during the adaptive step are well-proportioned.
The coarse regions of the mesh consist of two elements in the z direction,
whereas in the fine regions there are up to eight elements in this direction.

This analysis was performed with eight and 16 processors of an IBM SP/2
computer. Figures 5(a) and 5(b) show, respectively, the division of the initial
mesh and of the final mesh, in the eight-processor case. As more elements are
concentrated in the regions of the shock and the boundary layer, the processor
subdivision is changed by the dynamic load balancing procedure discussed in
section 4 – “Parallel procedures”.
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LEC melt flows
The finite element scheme is now applied to a problem of divergence-free
buoyancy-driven flow in a cavity. This is a simplified single-phase model for the
steady melt flow in a LEC crystal growth process (see section 1). The governing
equations are the Navier-Stokes equations with the Boussinesq approximation,
(6)-(9). We use this model problem to check the effectiveness of applying the new
computational framework to problems of this type. 

We consider buoyancy-driven flow in InP melt contained in a small cylindri-
cal crucible with a curved bottom, with radius rc and height H. The upper sur-
face of the melt (including the melt-crystal and melt-encapsulant interfaces) is
assumed to be flat. We introduce a cylindrical system of co-ordinates (r, θ, z),
with the z axis coinciding with the crucible axis and pointing upwards. We
denote the part of the boundary defined by the crucible walls and bottom by Γc.

Figure 3.
Flow over plate: finite
element meshes: (a)
initial mesh; (b) final
mesh, after two steps of
adaptive refinement
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Figure 4.
Flow over plate: finite

element results. Contour
lines are shown for (a)

density; (b) Mach
number; (c)

temperature; 
(d) pressure
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The melt-solid interface is defined by the circular domain z = H, 0 ≤ r ≤ rs, and
is denoted Γs. The melt-encapsulant interface is defined by the annular domain
z = H, rs < r ≤ rc, and is denoted Γf. 

The boundary conditions considered are as follows. A no-slip condition is
applied on the whole boundary. On Γc, a given constant temperature Tc is
prescribed. On Γs, the temperature is equal to the melting-point temperature
Tmp. On Γf, zero normal heat flux is assumed. The no-slip condition at the melt-
encapsulant interface is reasonable since the encapsulant is much more viscous
than the melt. The values of the parameters are: rc = 3.4cm, rs = rc/2, H = rc,
ρ0 = 5.05 g/cm3, µ = 0.0081g/cm-s, κ = 0.23W/cm-K, cp = 0.42J/g-K, β = 4.44 ·
10–4 K–1, T0 = Tmp = 1,335K. For later reference, we define the Grashof number,
which is the ratio of buoyancy to viscous forces,

(15)

Figure 5.
Flow over plate:
partitioning of the mesh
to eight parallel
processors: (a) initial
mesh partitioning; (b)
final mesh partitioning
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We control the value of Gr by assigning an appropriate value to the crucible
wall temperature, Tc. It should be noted that although the length scale of the
problem is realistic for InP crucibles (they are much smaller than silicon growth
crucibles), the Gr values considered here are smaller than the realistic ones in a
LEC process[6, 36]. This simplification is not so uncommon in crystal growth
modelling, since CZ and LEC systems with high Gr numbers are associated
with several complicated interacting flow instability phenomena[16].

The flow problems are solved using eight, 16 and 32 parallel processors. As
initial conditions, we set the velocity equal to zero and the temperature equal to
the crucible wall temperature Tc, everywhere. The adaptive procedure
described in section 4 – “Error estimation is used”, with an error indicator based
on a combination of the boundary layer indicator (11) and the magnitudes of the
temperature gradient. After each adaptive mesh-refinement step, time
marching is performed, with a local time step which is determined by setting
the algorithm Courant number equal to 10, until the residual norm is reduced by
three orders of magnitude. The dimension of the Krylov space used in the
GMRES solver is chosen to be 25. In these simulations the use of the DC term is
suppressed.

Figure 6(a) shows a three-dimensional view of the initial mesh used, which
contains about 140,000 elements. Figure 6(b) shows a vertical cross-section
through this mesh. Figures 6(c) and 6(d) show the meshes obtained after the
first and second adaptive refinement steps.

These meshes contain, respectively, about 230,000 and 400,000 elements, and
similar numbers of degrees of freedom. The latter is the final mesh used in this
example. In each refinement step, about eight of the elements in the current
mesh associated with the largest error indicator values are refined.

The mesh refinement near the walls of the crucible, and especially the top
boundary, where thin boundary layers are present, is apparent. The asymmetric
refinement seen in the final mesh (Figures 6(c) and 6(d)) is owing to the fact that
the original mesh, being an unstructured mesh of tetrahedral elements, is not
axisymmetric in nature. The error indicator calculation is slightly sensitive to
the local shape and size of the elements, and thus leads to small perturbations
in the error indicator values around the specified threshold value, and hence to
a slightly asymmetric refinement. However, this asymmetry is reduced as the
mesh is further refined, and it does not lead to significant asymmetry in the
solution itself. 

Figures 7(a) and 7(b) show, respectively, the initial and final mesh partition-
ing, when eight processors are used. The differences between the two are owing
to the dynamic load balancing procedure employed. It is clear that the final
processor distribution is such that more effort is concentrated near the top
surface of the melt, where most of the refinement has taken place. 

Figures 8-10 show the finite element results. Figure 8 is the temperature
contour plot in the vertical yz plane, for Gr = 3.3 · 104. Figures 9(a), 9(b) and 9(c)
show the velocity pattern in a vertical plane for Gr = 3.3 · 104, 3.3 · 105 and
3.3 · 106 respectively. Figure 10 shows the velocity distribution in the horizontal
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plane z = 3.2, slightly below the top surface of the melt. These results are similar
in principle to those presented in [7,8,13]. At the heated vertical wall of the
crucible the melt rises owing to buoyancy, and then turns radially inwards at
the melt surface. This gives rise to the Rayleigh-Bénard toroidal cell flow seen
in Figures 9(a)-9(c). The flow cell is not centred; its centre is closer to the crucible
wall, as in the “bulk-flow” model in[13]. The radial flow shown in Figure 10,
which is the upper part of the toroidal cell, exists below the boundary layer
adjacent to the top surface of the melt. In CZ flows, where no encapsulant is
used, this radial flow appears on the free surface of the melt.

Figure 6.
Melt flow of InP: finite
element meshes: (a)
initial mesh; (b) vertical
section through initial
mesh; (c) mesh after one
adaptive refinement; (d)
mesh after a second
adaptive refinement
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We note, however, that these results are expected to differ significantly from
those obtained in a fully-coupled LEC simulation. This has been demonstrated
in [13], where the results of a simple CZ “bulk-flow” model and of a coupled
thermal-capillary model, were compared in various configurations. The
significant differences in the results of the two models, especially at high Gr
numbers, show that flow coupling effects are important, and thus the uncoupled
model is too simple to yield accurate information.

Figure 7.
Melt flow of InP: mesh

partitioning, with eight
processors: (a) initial

mesh partitioning: (b)
final mesh partitioning

Figure 8.
Melt flow of InP:

temperature contour
lines in the vertical yz

plane, for GR = 3.3 · 104
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Figure  9.
Melt flow of InP:
velocity pattern in the
vertical yz plane: 
(a) Gr = 3.3 · 104; 
(b) Gr = 3.3 · 105; 
(c) Gr = 3.3 · 106
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Although our finite element scheme solves three-dimensional problems, the
steady-state results shown here are all axisymmetric. Both experimental
evidence and numerical calculations with realistic value of Gr, show that CZ and
LEC processes always involve flows which are time-dependent and fully three-
dimensional. For silicon with buoyancy-driven flows, transition to time-
dependent three-dimensional solutions typically occurs at Gr ≈ 5 · 106[7, 8]. 

The extension of the current methodology to the three-dimensional regime of
realistic Gr values is currently underway. Time-dependent simulations and
some preliminary three-dimensional results for large Gr are reported in [37].
These results show that transition to unsteady three-dimensional flows occurs
at about Gr = 107, and that these flows are characterized by short transient,
followed by periodic oscillations with period of about 3.5 seconds. The
simulations in [37] also include flows in silicon and InP melts with the combined
effects of natural convection owing to buoyancy and forced convection owing to
crystal and crucible rotation.

6. Concluding remarks
In this paper we have described a new parallel adaptive finite element scheme
for the large-scale analysis of viscous flows. We demonstrated how this scheme
can be applied to both compressible and incompressible flows, and to problems
governed by the Navier-Stokes equations with the Boussinesq approximation.

Further developments are currently underway. First, the spatially linear
finite elements used here may be replaced by higher-order elements. This
extension is rather straightforward, and would lead to a highly accurate and
stable scheme. Stability is guaranteed owing to the GLS formulation.
Incorporating a general hierarchy of high-order finite elements would enable

Figure 10.
Melt flow of InP:

velocity distribution in
the horizontal plane

z = 3.2, slightly below
the top surface of the

melt
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the use of hp-adaptive strategies, which have known advantages over 
h-adaptive schemes in many cases.

Second, the capability of efficient time-dependent analysis is being added to
the present scheme. Effective time integration, which is essential in a large-scale
non-linear analysis, will be achieved using high-order singly implicit Runge-
Kutta (SIRK) methods[38].

Finally, we intend to extend and apply the methodology described in this
paper to the coupled multiphase transient analysis of InP high-pressure crystal
growth systems. The difficulties entailed in the realistic analysis of the full LEC
system, including all the important effects, are enormous and we believe that
the current methodology serves as an excellent framework for such
simulations.
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